Regulatory role of human AP-endonuclease (APE1/Ref-1) in YB-1-mediated activation of the multidrug resistance gene MDR1.
نویسندگان
چکیده
Human AP-endonuclease (APE1/Ref-1), a central enzyme involved in the repair of oxidative base damage and DNA strand breaks, has a second activity as a transcriptional regulator that binds to several trans-acting factors. APE1 overexpression is often observed in tumor cells and confers resistance to various anticancer drugs; its downregulation sensitizes tumor cells to such agents. Because the involvement of APE1 in repairing the DNA damage induced by many of these drugs is unlikely, drug resistance may be linked to APE1's transcriptional regulatory function. Here, we show that APE1, preferably in the acetylated form, stably interacts with Y-box-binding protein 1 (YB-1) and enhances its binding to the Y-box element, leading to the activation of the multidrug resistance gene MDR1. The enhanced MDR1 level due to the ectopic expression of wild-type APE1 but not of its nonacetylable mutant underscores the importance of APE1's acetylation in its coactivator function. APE1 downregulation sensitizes MDR1-overexpressing tumor cells to cisplatin or doxorubicin, showing APE1's critical role in YB-1-mediated gene expression and, thus, drug resistance in tumor cells. A systematic increase in both APE1 and MDR1 expression was observed in non-small-cell lung cancer tissue samples. Thus, our study has established the novel role of the acetylation-mediated transcriptional regulatory function of APE1, making it a potential target for the drug sensitization of tumor cells.
منابع مشابه
Regulatory Role of Human AP-endonuclease (APE1/Ref-1) in YB-1-Mediated Activation of Multi Drug Resistance (MDR1) Gene
Running Title: APE1 modulates YB-1-mediated activation of MDR1 ABSTRACT The human AP-endonuclease (APE1/Ref-1), a central enzyme involved in repair of oxidative base damage and DNA strand breaks, has a second activity as a transcriptional regulator that binds to several transacting factors. APE1 overexpression is often observed in tumor cells, and confers resistance to various anticancer drugs;...
متن کاملDual Regulatory Roles of Human AP-Endonuclease (APE1/Ref-1) in CDKN1A/p21 Expression
The human AP-endonuclease (APE1/Ref-1), an essential multifunctional protein involved in repair of oxidative DNA damage as well as in transcriptional regulation, is often overexpressed in tumor cells. APE1 was earlier shown to stimulate p53's DNA binding and its transactivation function in the expression of cyclin-dependent kinase inhibitor p21 (CDKN1A) gene. Here, we show APE1's stable binding...
متن کاملA new APE1/Ref-1-dependent pathway leading to reduction of NF-κB and AP-1, and activation of their DNA-binding activity
APE1/Ref-1 is thought to be a multifunctional protein involved in reduction-oxidation (redox) regulation and base excision DNA repair, and is required for early embryonic development in mice. APE1/Ref-1 has redox activity and AP endonuclease activity, and is able to enhance DNA-binding activity of several transcription factors, including NF-kappaB, AP-1 and p53, through reduction of their criti...
متن کاملThe apurinic/apyrimidinic endonuclease activity of Ape1/Ref-1 contributes to human glioma cell resistance to alkylating agents and is elevated by oxidative stress.
Alkylating agents are standard components of adjuvant chemotherapy for gliomas. We provide evidence here that Ape1/Ref-1, the major mammalian apurinic/apyrimidinic endonuclease (Ap endo), contributes to alkylating agent resistance in human glioma cells by incising DNA at abasic sites. We show that antisense oligonucleotides directed against Ape1/Ref-1 in SNB19, a human glioma cell line lacking ...
متن کاملRegulation of the human AP-endonuclease (APE1/Ref-1) expression by the tumor suppressor p53 in response to DNA damage
The human AP-endonuclease (APE1/Ref-1), an essential multifunctional protein, plays a central role in the repair of oxidative base damage via the DNA base excision repair (BER) pathway. The mammalian AP-endonuclease (APE1) overexpression is often observed in tumor cells, and confers resistance to various anticancer drugs; its downregulation sensitizes tumor cells to those agents via induction o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 28 23 شماره
صفحات -
تاریخ انتشار 2008